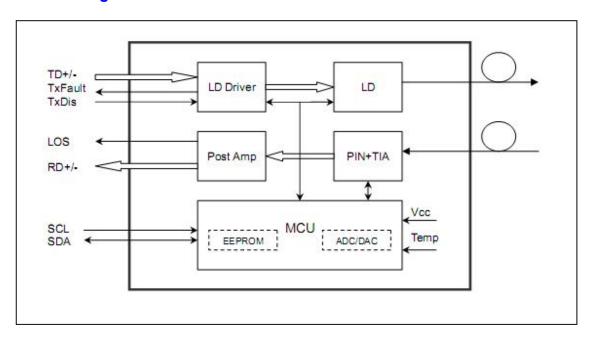


SNS SFP-TGD-SR4 4.25 Gbps Multi-Rate Single-Mode 10 km SFP Transceiver

Highlights

- SFP MSA transceiver
- Data-rates: 1.0625/2.125/4.25 Gbps
- Protocols:
- 1 Gbps Ethernet
- 1/2/4 Gbps Fibre Channel
- SONET OC-24-LR-1
- Single-mode fiber
- Dual Fiber (Tx/Rx)
- 1310nm DFB Laser and PIN photodetector
- 10km transmission
- Duplex LC connector
- · Digital Diagnostics
- Hot-swap

Overview


Optical SNS SFP is a high performance transceiver compliant with 1G Small Form-Factor Pluggable (SFP) Multi-Source Agreement (MSA), supporting data-rate of 1.25Gbps and transmission distance up to 10km on SMF. The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. Transmitter and receiver are separate within a wide temperature range of 0°C to +70°C (Commercial) or -40°C to +85°C (Industrial) and offers optimum heat dissipation and excellent electromagnetic shielding thus enabling high port densities for Fibre Channel per FC-PI-2 Rev. 10.0. and compatible with Gigabit Ethernet as specified in IEEE Std 802.3. 1GbE systems.

Specifications

Data Rates:	1.0625/2.125/4.25Gbps
Wavelength Tx	1310 nm
Tx Power	-8 ~ 0 dBm
Tx Disable	Yes
Wavelength Range	1260 nm ~ 1360 nm
Rx Sensitivity	-18.0 dBm
Receiver Reflectance	-20 dBm
Operating Temperature Range	0°C to +70°C (Commercial) or -40°C to +85°C (Industrial)
Power Consumption	< 1 Watts

Module Block Diagram

Absolute Maximum Ratings

Table 1 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Power Supply Voltage	Vcc-Vee	0	3.6	V	-
Storage Temperature	Tst	-40	+85	°C	-
Operating Humidity	RH	5	90	%	Non-condensing

Recommended Operating Conditions

Table 2 - Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Standard	Tc	0		+70	°C
Operating Case Temperature	Industrial	10	-40		+85	°C
Power Supply Voltage		Vcc	3.13	3.3	3.47	V
Power Supply Current		lcc			300	mA

Optical and Electrical Characteristics

Table 3 - Optical and Electrical Characteristics

Parai	meter	Symbol	Min	Typical	Max	Unit	Notes
			Transmitte	r			
Data Rate				4.25		Gb/S	
Centre Waveleng	gth	λс	1260	1310	1360	nm	
Spectral Width (-	-20dB)	Δλ			1	nm	
Side Mode Sup	pression Ratio	SMSR	30			dB	
Average Output	Power(BOL)	Pout	-8		0	dBm	1
Extinction Ratio		ER	5			dB	
Average Launch Transmitter	Power-OFF	Pout			-40	dBm	
Optical Eye Dia	agram			Fibre Chann	el Compliant		
Optical Rise/Fall	Time (20%~80%)	t _r /t _f			130	ns	
Data Input Swing	g Differential	V_{IN}	200		2400	mV	2
Input Differential	Impedance	Z _{IN}	90	100	120	Ω	
TX Disable	Disable		2.0		Vcc	V	
1 A Disable	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc	V	
TX T auit	Normal		0		0.8	V	
			Receiver				
Centre Waveleng	gth	λс	1260		1360	nm	
Receiver Sensitiv	vity(BOL)	Sen			-18	dBm	3
LOS De-Assert		LOS _D			-18	dBm	
LOS Assert		LOSA	-28			dBm	
LOS Hysteresis			0.5		6	dB	
Receiver Reflectance					-20	dB	
Data Output Swing Differential		V_{out}	350		1800	mV	4
Loss of Signal (LOS) Assert Time		TAssert			500	nS	
Loss of Signal (LOS) Deassert Time		TDeassert			500	nS	
LOS		High	2.0		Vcc	V	
LOG		Low			8.0	V	

Notes:

- The optical power is launched into SMF.
 PECL input, internally AC-coupled and terminated.
 Measured with a PRBS 2⁷-1 test pattern @4250Mbps, BER ≤1×10⁻¹².
 CML Output,internally AC-coupled.

Timing and Electrical

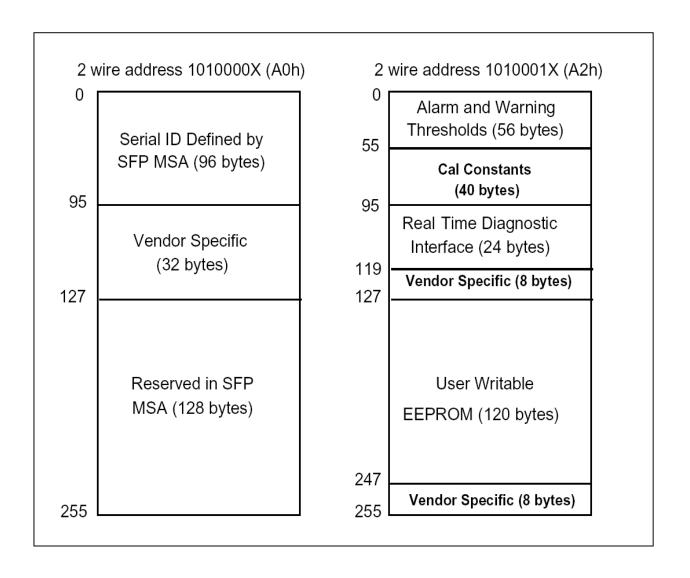
Table 4 - Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	V_{H}	2		Vcc	V
MOD_DEF (0:2)-Low	V _L			0.8	V

Diagnostics

Table 5 – Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration
Tomporatura	0 to +70	°C	±3°C	Internal / External
Temperature	-40 to +85	Ç	±3 C	memar/ External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 100	mA	±10%	Internal / External
TX Power	-9 to -3	dBm	±3dB	Internal / External
RX Power	-23 to -3	dBm	±3dB	Internal / External



Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

Pin Definitions

Pin Diagram

20 VeeT	1 VeeT			
19 TD-	2 TxFault			
18 TD+	3 Tx Disable			
17 VeeT	4 MOD-DEF(2)			
16 VccT	5 MOD-DEF(1)			
15 VccR	6 MOD-DEF(0)			
14 VeeR	7 Rate Select			
13 RD+	8 LOS			
12 RD-	9 VeeR			
11 VeeR	10 VeeR			
Top of Board	Top of Board Board (as viewed thru top of board)			

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V_{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	V_{EER}	Receiver ground	1	
10	V_{EER}	Receiver ground	1	
11	V_{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	V_{EER}	Receiver ground	1	
15	V_{CCR}	Receiver Power Supply	2	
16	V_{CCT}	Transmitter Power Supply	2	
17	V_{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	V_{EET}	Transmitter Ground	1	

Notes

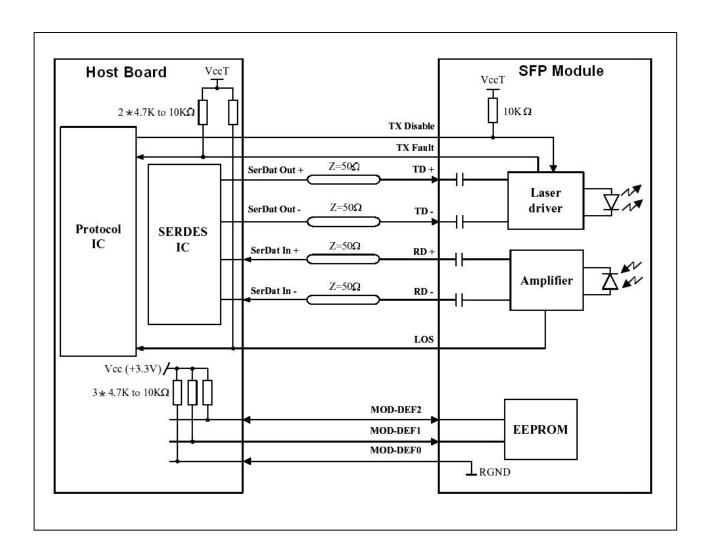
Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0 to 0.8V): Transmitter on (>0.8V, < 2.0V): Undefined High (2.0 to 3.465V): Transmitter Dis

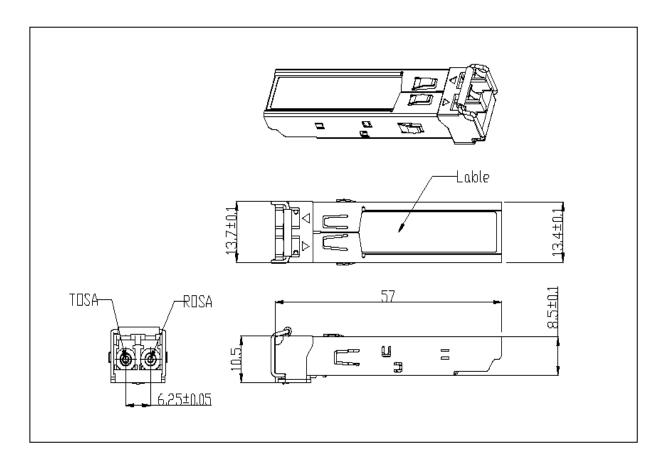
High (2.0 to 3.465V): Transmitter Disabled Open: Transmitter Disabled

- 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7k~10kΩ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 - Mod-Def 0 is grounded by the module to indicate that the module is present


Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID

- 4) LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.



Recommended Interface Circuit

Mechanical Dimensions

Regulatory Compliance

SFP transceiver is designed to be Class I Laser safety compliant and is certified per the following standards

Feature	Agency	Standard	Certificate / Comments
Laser Safety	FDA	CDRH 21 CFR 1040 annd Laser Notice No. 50	1120295-000
Product Safety	BST	EN 60825-1: 2007 EN 60825-2: 2004 EN 60950-1: 2006	BT0905142001
Environmental protection	SGS	RoHS Directive 2002/95/EC	GZ0902007478/CHEM
EMC	CCIC	EN 55022: 2006+A1: 2007 EN 55024: 1998+A1: 2001+A2: 2003	CTE09020023

Ordering information

Part Number	Product Description
SNS SFP-TGD-SR4	1310nm, 4.25Gbps Multi-Rate Single-Mode 10 km,0°C ~ +70°C SFP Transceiver
SNS SFP-TGD-SR4TH	1310nm, 4.25Gbps Multi-Rate Single-Mode 10 km,-40°C \sim +85°C SFP Transceiver

References

- 1. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 2000.
- 2. Telcordia GR-253and ITU-T G.957 Specifications.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by us before they become applicable to any particular order or contract. In accordance with our policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of others. Further details are available from any sales representative.